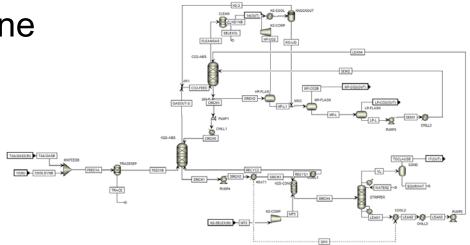


Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO₂ Capture Nicholas S. Siefert, Sarah Narburgh, Yang Chen August 8, 2016

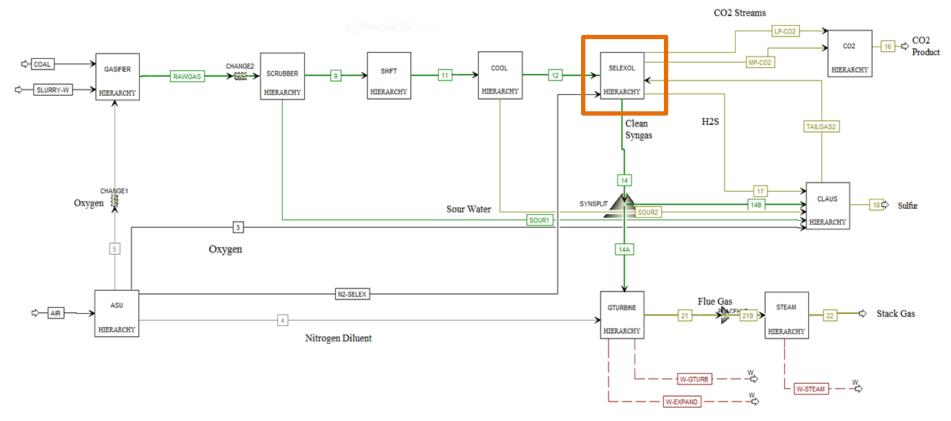
2016 NETL CO₂ Capture Review Meeting

National Energy Technology Laboratory


Outline

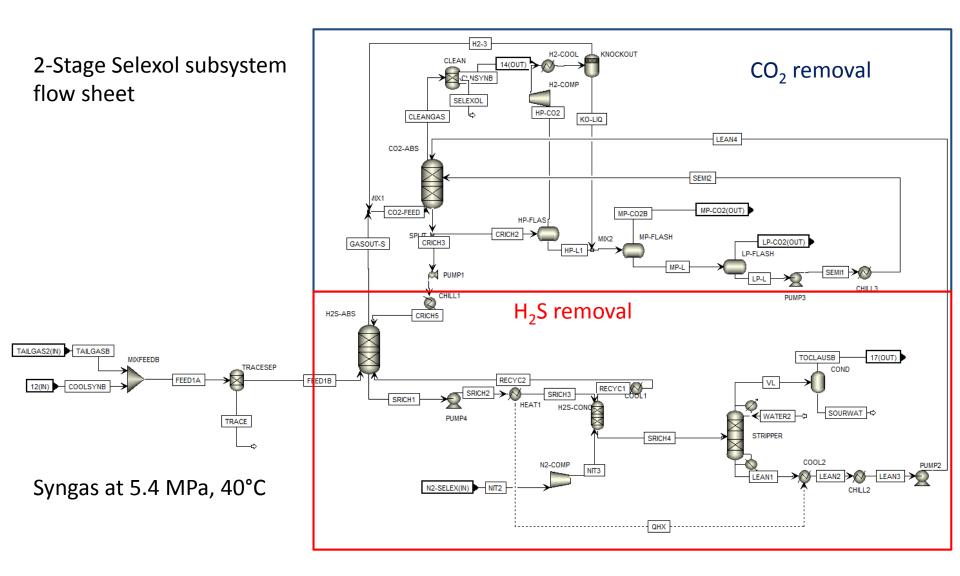
- IGCC-CCS Overview
- Intro to Exergy Analysis for State-Steady Processes
- Overview of All 3 Cases
 - Baseline Selexol[™] Model
 - H₂-selective membrane
 - CO₂-selective membrane
- Comparison of Cases
- Conclusions & Future Work

Integrated Gasification Combined Cycle (IGCC)



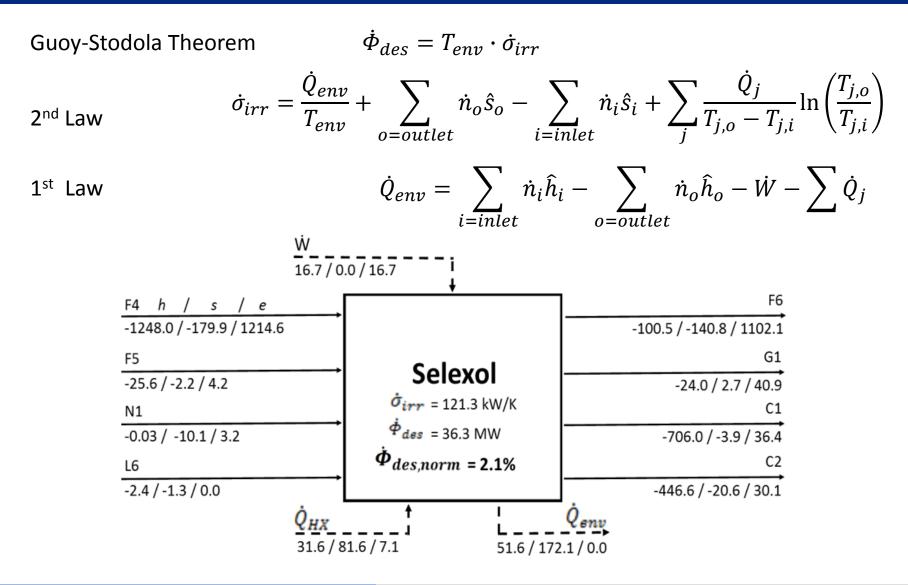
Baseline Model includes Ten Subsystems

GE IGCC with CO2 Capture

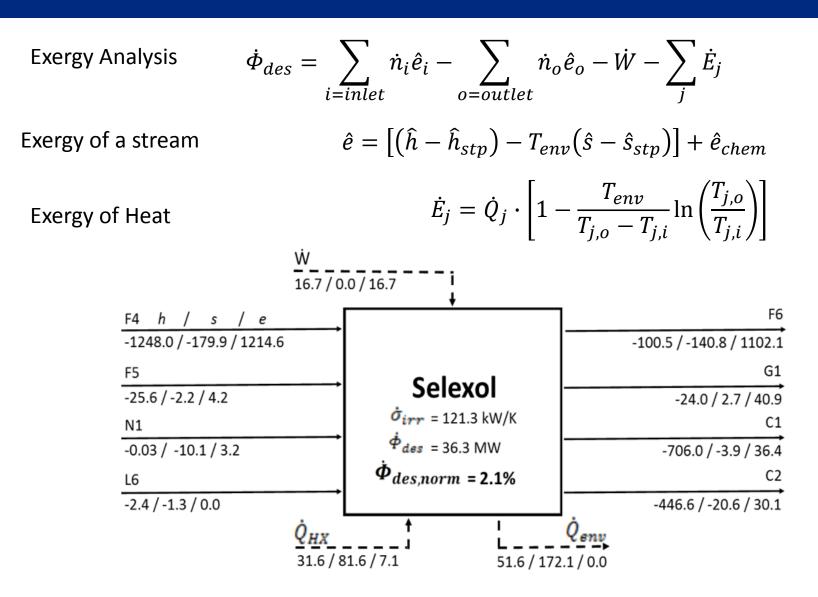


Model #1: Baseline Model from Field and Brasington (2011) Based off of NETL's Bituminous Baseline Rev 2 (Nov 2010): GEE IGCC-CCS

ENERGY National Energy Technology Laboratory Field and Brasington, "Baseline Flowsheet Model for IGCC with Carbon Capture," Ind. Eng. Chem. Res., 2011, 50 (19), pp 11306–11312 http://pubs.acs.org/doi/abs/10.1021/ie200288u

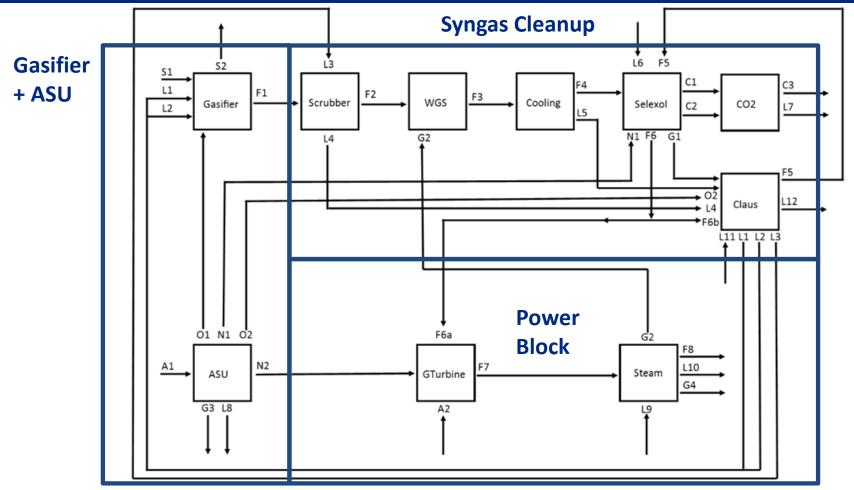

Example Subsystem

Subsystem Analysis: Route#1



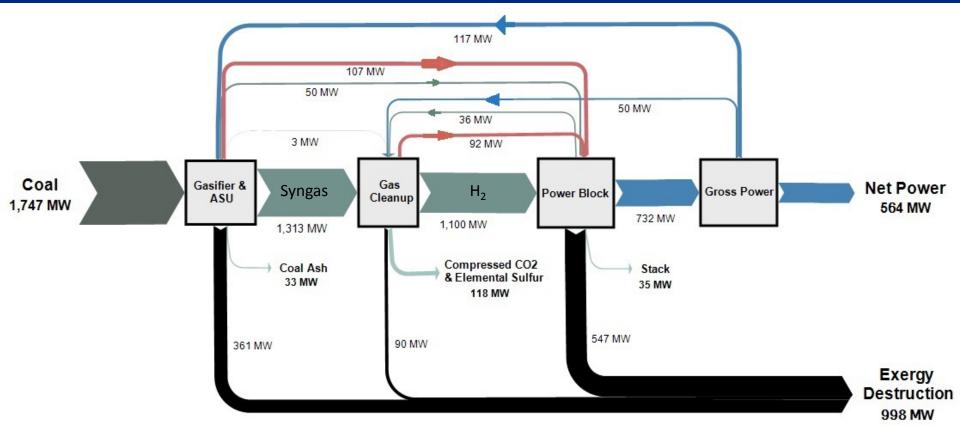
National Energy Technology Laboratory Siefert, Narburgh, and Chen, "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO₂ Capture," Energies, *under review*.

Subsystem Analysis: Route#2



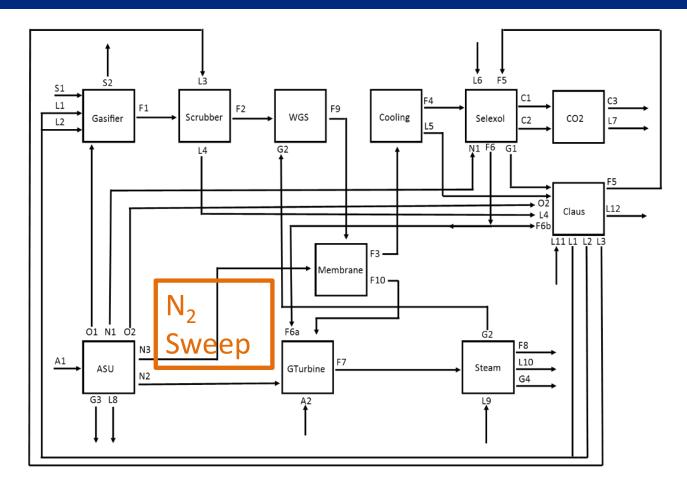
National Energy Technology Laboratory Siefert, Narburgh, and Chen, "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO₂ Capture," Energies, *under review*.

Baseline Model: Revisited



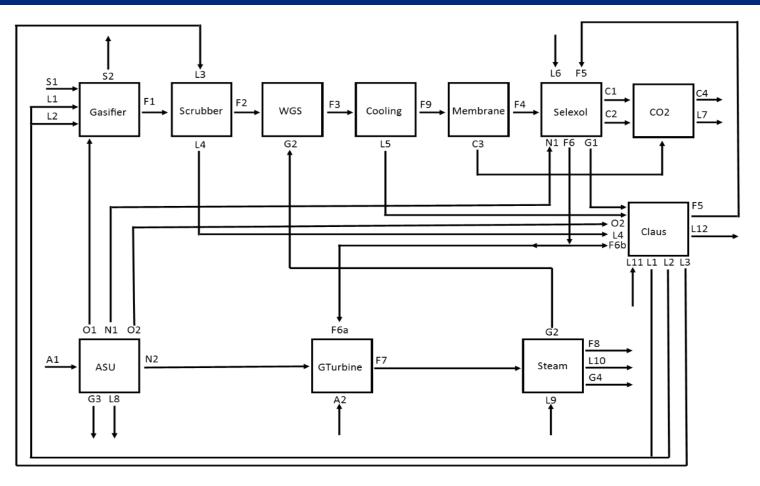
Model #1: Baseline Model from Field and Brasington (2011) Based off of NETL's Bituminous Baseline Rev 2 (Nov 2010): GEE IGCC-CCS

Exergy Sankey Diagram: Baseline



- **Red** = Flow of Thermal exergy between sub-systems
- **Blue** = Flow of Electricity
- **Teal** = Flow of Materials streams with exergy
- **Black** = Exergy Destruction

H₂-Selective Membrane Model


Model #2: Hydrogen Membrane Model process flow diagram

Aspen Custom Modeler (ACM) used to model the H₂-Selective Membrane Membrane operates at 250°C. Modeled after the PBI membrane process developed by Berchtold *et. al* at LANL H₂/CO₂ = 48, H₂/CO = 100, H₂/CH₄ = 234, H₂/H₂S = 1289, H₂/N₂ = 233, H₂/H₂O = 0.33

ENERGY National Energy Technology Laboratory Kathryn A. Berchtold, Rajinder P. Singh., Kevin W. Dudeck, Ganpat J. Dahe, and Cynthia F. Welch In *High* temperature polymer-based membrane systems for pre-combustion carbon dioxide capture, NETL CO2 Capture Technology Meeting, Pittsburgh, PA, 31 July 2014, 2014; Pittsburgh, PA, 2014.

CO₂-Selective Membrane Model

Model #3: Carbon Dioxide Membrane Model process flow diagram

Aspen Custom Modeler (ACM) used to model the CO₂-Selective Membrane

Membrane operates at 40°C. Optimistic values of CO_2/H_2 and $CO_2/other$ gases were assumed because, even at optimistic values, the process could not compete against the baseline model. CO_2 Selectivity was assumed to be 50 for all gases, except H_2O .

Comparison Between Cases

		Baseline Mod	lel	Hydi	rogen Membran	e Model	CO ₂ Membrane Model			
Subsystem or <i>Exiting</i> <i>Stream</i>	Norm. Power [%]	Norm. Exergy Destruction [%]	Norm. Exergy Remaining [%]	Norm. Power [%]	Norm. Exergy Destruction [%]	Norm. Exergy Remaining [%]	Norm. Power [%]	Norm. Exergy Destruction [%]	Norm. Exergy Remaining [%]	
<u> </u>										
Gasifier	0.00	17.4	-	0.0	17.4	-	0.0	17.4	-	
Scrub	0.00	0.2	-	0.0	0.2	-	0.0	0.2	-	
WGS	0.00	1.3	-	0.0	1.3	-	0.0	0.2	-	
Mem	-	-	-	0.0	0.7	-	0.0	0.2	-	
Cool	0.00	0.0	-	0.0	0.0	-	0.0	1.1	-	
Selexol	-1.0	2.1	-	-0.8	1.5	-	-0.4	1.0	-	
CO ₂	-1.6	0.4	-	-1.1	0.3	-	-1.5	0.5	-	
ASU	-6.7	3.2	-	-5.8	3.4	-	-6.2	2.7	-	
GT	27.0	22.6	-	26.9	21.8	-	25.2	21.5	-	
Steam	14.8	8.8	-	14.4	8.0	-	14.7	9.3	-	
Claus	-0.3	1.1	-	-0.2	0.8	-	-0.3	1.2	-	
Slag		-	1.9	-	-	1.9	-	-	1.9	
CO ₂ Prod		-	5.0	-	-	4.9	-	-	7.8	
S-out		-	1.7	-	-	1.6	-	-	1.6	
Stack Gas		-	2.0	-	-	2.3	-	-	1.8	
Knock Out		-	0.04	-	-	0.2	-	-	0.2	
Total	32.3	57.1	10.6	33.4	55.4	11.2	31.5	55.1	13.4	

Summary of Results

	Baseline Model	H ₂ -Selective Membrane Model	CO ₂ -Selective Membrane Model
Work Produced [MW]	732.1	721.5	697.3
Work Consumed [MW]	167.8	137.2	147.4
Net Work [MW]	564.3	584.3	549.9
Total Heat Transferred to the Environment [MW _{th}]	799.3	686.3	759.4
CO ₂ Captured / (CO ₂ Capture + CO ₂ Emitted) [%]	90.0	90.0	90.0
Hydrogen Recovered [%]	99.86	99.94	95.5
Total CO ₂ Captured [kg/s]	128	128	128
Normalized CO ₂ emissions [kg/MWh]	90.7	87.6	93.1

Conclusions & Future Work

- H₂ membrane case increased the net efficiency compared with the baseline, whereas the CO₂ membrane case decreased the net efficiency
- In all cases, there was large exergy destruction in the entrained flow, quenched gasifier
 - 17.4% exergy destruction in gasifier
 - 2.4% exergy destruction in heat transfer to Rankine cycle
 - 1.9% exergy remaining in the carbon-rich slag
- From an exergy point of view, there is major room for improvement in both the gasifier and GTurbine subsystems
- <u>Future Work</u>: Techno-economic analyses of these 3 cases, along with a few other cases, is currently in preparation

Chen, Y., Fisher, J.C. II, Turner, M. J., Woods, M., Miller, D.C. "Techno-economic Analysis for H_2 - and CO_2 -selective Membranes in the Integrated Gasification Combined Cycle (IGCC) Process," in preparation.

Questions? Thank you for your attention.

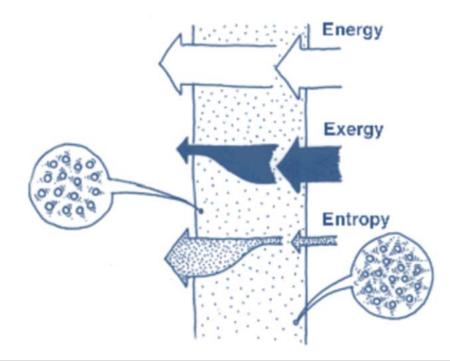
National Energy Technology Laboratory

Back Up Slides

National Energy Technology Laboratory

Definition of Exergy & Exergy Destruction

ê


- Exergy = Maximum amount of useful work that can be obtained from a reversible process by bringing material into full mechanical, thermal, and chemical equilibrium with the environment
- Environment is usually assumed to be Earth's atmosphere at standard temperature and pressure
- Exergy cannot be negative

ENERGY

- Exergy can be destroyed, but not created
- All real-world processes destroy some exergy; the goal is to find the balance between low exergy destruction and low cost

$$= \left[\left(\hat{h} - \hat{h}_{stp} \right) - T_{env} \left(\hat{s} - \hat{s}_{stp} \right) \right] + \hat{e}_{chem}$$
$$\dot{E}_j = \dot{Q}_j \cdot \left[1 - \frac{T_{env}}{T_{j,o} - T_{j,i}} \ln \left(\frac{T_{j,o}}{T_{j,i}} \right) \right]$$

$$\dot{\Phi}_{des} = T_{env} \cdot \dot{\sigma}_{irr}$$

Chemical exergy of species at STP

Gas Species	Molar chemical exergy at STP [kJ/mol]	Solid Species	Molar chemical exergy at STP [kJ/mol]						
N ₂ (g)	0.69	FeO(s)	125.4						
O ₂ (g)	3.97	Fe (s)	367.6						
H ₂ O(g)	8.55	C(s)	409.8						
Ar(g)	11.7	S(s) / S ₈ (s)	75.3 / 602.7						
CO ₂ (g)	19.4	CaO/MgO	0*						
$H_2(g)$	235.2	Na ₂ O/K ₂ O	0*						
CO(g)	274.6	$Fe_2O_3/SiO_2/Al_2O_3$	0*						
NH ₃ (g)	336.7								
H ₂ S(g)	804.6	Liquid Species							
CH ₄ (g)	829.6	H ₂ O(I)	0*						
COS(g)	848.8	* = approximation for simplicity							

National Energy Technology Laboratory Chemical exergies derived from Gibbs Free Energy of Formation along with assumptions listed in the next slide for the composition of the environment

Gas	mol%	Liquid	Activity	Solid	Activity
Species		H ₂ O(I)	1	CaCO ₃	1
N ₂	75.67	NaCl(aq)	Not Appl.	CaSO ₄ ·2H ₂ O	1
02	20.35			SiO ₂	1
H ₂ O(g)	3.03				1
Ar	0.91			Al ₂ O ₃	1
CO ₂	0.04			Fe ₂ O ₃	1

Assumption in All Three Cases

Gas Turbi	ne	Steam		Additional Information				
Turbine Inlet	1185°C	HP Inlet	12.5 MPa	η _{pump}	75.0-100%			
Turbine	0.105 MPa	MP Inlet	6.00 MPa	η _{comp}	73.5-85%			
Outlet		IP Inlet	2.90 MPa	EOS	PR-BM			
Comp. Outlet	1.62 MPa	NP Inlet	1.73 MPa	EOS- Selexol	PC-Saft			
	10000			Steam Table	STEAMNBS			
T _{fuel}	180°C	LP Inlet	0.45 MPa	CO, pipeline	15.3 MPa			
P _{fuel}	3.17 MPa	η _{isen}	87.5%	pressure	13.5 IVIF d			
η _{comp,isen}	86.5%	n	98.3%					
$\eta_{comp,mech}$	98.5%	η _{mech}		Gasifier				
η _{turb,isen}	89.8%	η _{pump}	82.0%	Pressure	5.6 MPa			
$\eta_{turb,mech}$	98.8%	Condenser	0.007 MPa	Outlet T	1370°C			

Baseline Model: Results

Subsystem	Gasifier	Scrub	WGS	Cool	Selexol	CO ₂	ASU	GT	Steam	Claus	Total
Power [MW]	0.0	0.0	0.0	0.0	-16.7	-28.3	-117.4	472.6	259.5	-5.4	564.3
ThermalEnergyTransferred to Env[MWth]	16.9	0.0	0.3	7.7	51.6	51.3	140.3	15.5	454.3	61.4	799.3
Exergy Destroyed [MW]	304.6	4.1	22.2	0.7	36.3	7.5	56.2	394.2	153.2	19.5	998.5
Exergy in Heat To/From Steam Subsystem [MW]	122.2	0.0	80.4	14.1	-7.1	0.0	-15.4	-8.1	-190.3	4.3	0.0
Normalized Power [%]	0.0	0.0	0.0	0.0	-1.0	-1.6	-6.7	27.0	14.8	-0.3	32.3
Normalized Exergy Destruction [%]	17.4	0.2	1.3	0.04	2.1	0.4	3.2	22.5	8.8	1.1	57.1
Outlet Stream	Slag	_	_	_	_	CO ₂ Prod	Knock Out	_	Stack Gas	S-out	
Exergy Remaining [MW]	33.0					87.4	0.7		34.2	30.2	185.6
Normalized Exergy Remaining [%]	1.9					5.0	0.0		2.0	1.7	10.6
Total											100.0

Siefert, Narburgh, and Chen, "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO₂ Capture," Energies, *under review*.

H₂-Selective Membrane: Results

Subsystem	Gasifier	Scrub	WGS	Mem	Cool	Selexol	CO ₂	ASU	GT	Steam	Claus	Total
Power [MW]	0.0	0.0	0.0	0.0	0.0	-13.2	-19.5	-101.5	470.1	251.4	-3.0	584.3
Thermal Energy												
Transferred to	16.9	0.0	0.0	0.0	5.6	38.4	41.9	127.7	15.6	405.9	34.3	686.3
Env [MW _{th}]												
Exergy Destroyed	304.6	4.1	22.8	12.4	0.8	26.2	5.3	59.4	381.0	140.6	14.7	972.0
[MW]												
Exergy in Heat												
To/From Steam	122.2	0.0	42.8	3.9	6.8	-5.5	0.0	0.0	-3.8	-160.8	5.5	0.0
Subsystem [MW]												
Normalized	0.0	0.0	0.0	0.0	0.0	-0.8	-1.1	-5.8	26.9	14.4	-0.2	33.4
Power [%]	0.0	0.0	0.0	0.0	0.0	-0.0	-1.1	-5.0	20.7	14.4	-0.2	55.4
Normalized												
Exergy	17.4	0.2	1.3	0.7	0.0	1.5	0.3	3.4	21.8	8.0	0.8	55.6
Destruction [%]												
Outlet Stream	Slag	-	-	_	_	_	CO ₂ Prod	Knock Out	_	Stack Gas	S-out	
Exergy Remaining [MW]	33.0						86.3	3.6		40.5	28.5	192.0
Normalized												
Exergy	1.9						4.9	0.2		2.3	1.6	11.0
Remaining [%]	,						,				1.0	
Total												100.0

H₂-Selective Membrane: Results

Subsystem	Gasifier	Scrub	WGS	Mem	Cool	Selexol	CO ₂	ASU	GT	Steam	Claus	Total
Power [MW]	0.0	0.0	0.0	0.0	0.0	-7.4	-26.7	-107.7	440.9	256.4	-5.7	549.9
ThermalEnergy Transferred to Env [MW _{th}]	16.9	0.0	0.0	0.0	7.6	28.3	39.3	99.7	15.2	490.8	61.6	759.4
Exergy Destroyed [MW]	304.6	4.1	4.2	3.9	18.6	17.3	8.3	47.0	375.9	162.4	20.7	967.2
Exergy in Heat To/From Steam Subsyst. [MW]	122.2	0.0	80.4	0.0	14.1	-4.2	0.0	-3.3	-7.5	-205.5	3.9	0.0
Normalized Power [%]	0.0	0.0	0.0	0.0	0.0	-0.4	-1.5	-6.2	25.2	14.7	-0.3	31.5
Normalized Exergy Destruct. [%]	17.4	0.2	0.2	0.2	1.1	1.0	0.5	2.7	21.5	9.3	1.2	55.2
Outlet Stream	Slag	_	_	_	_	_	CO ₂ Prod	Knock Out	_	Stack Gas	S-out	
Exergy Remaining [MW]	33.0						136.0	2.9		31.3	28.1	231.3
Normalized Exergy Remaining [%]	1.9						7.8	0.2		1.8	1.6	13.3
Total												100.0

Siefert, Narburgh, and Chen, "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO₂ Capture," Energies, *under review*.